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Abstract A power-series potential energy function that is analogous to that of the
Molski potential is proposed herein such that reductions to the Dunham and Simons-
Parr-Finlan (SPF) potential functions are obtained by prescribing numerical values
of 0 and 1 respectively to a type parameter. The type parameter takes the form of an
index instead of a multiplier in the case of the Molski potential. Verification of the
proposed potential function was performed by comparing it alongside the Dunham,
SPF and Ogilvie potentials in being fitted to the RKR results of CO diatomic molecule.
The proposed potential with the selection of central value to its type parameter is a
geometric mean analogy to the Ogilvie potential’s arithmetic mean of the Dunham
and SPF potential functions. Although prescription of any numerical value to the type
parameter allows good curve fit within the range of RKR data, the extent of conver-
gence is influenced by the choice of type parameter. Having shown the validity of the
proposed potential, further studies is proposed in order to establish the comparative
advantages of this potential with other power-series potential energy function.

Keywords Generalized potential · Potential energy function · Power-series

1 Introduction

The quest for quantifying the molecular interaction energy in the past century is paving
a way for understanding the behavior of materials and structures at the molecular and
nano-scale level. It follows that accurate molecular potential energy quantification,
by means of potential energy functions, contributes towards more accurate and reli-
able simulation. Potential energy functions may well be broadly categorized into (a)
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Fig. 1 Categorization of power-series potential energy functions

empirical potential functions [1–16], (b) Padé approximants [17], and (c) the power
series expansions. The power-series expansion potential functions, in turn, can be
classified into 3 types: (i) basic power-series potentials, (ii) generalized power-series
potentials, and (iii) extended power-series potentials. Figure 1 shows the breakdown
of these potential energy functions with special emphasis on the power-series expan-
sion, which are known to give very accurate potential energy curve near the minimum
well-depth zone.

The power series potential takes the form

UP S = C0λ
2

(
1 +

∞∑
i=1

Ciλ
i

)
(1)

whereby the basis function, λ is a function of the internuclear distance, r and the
equilibrium bond length, R for the basic power-series potential function. In addition
to r and R, λ is also a function of the type parameter and/or other fitting parameters
in the case of generalized and extended potential functions. The basis functions of the
Dunham [18,19], Simons-Parr-Finlan (SPF) [20] and Ogilvie [21] potentials are

λDUN = r − R

R
, (2)

λSPF = r − R

r
(3)

and

λOGI = r − R
1
2 (r + R)

(4)
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respectively. As the name suggests, the generalized power-series potentials possess
type parameters such that prescribing specific numerical values into these parame-
ters reduce the generalized power-series into the basic ones. The basis functions of
Thakkar [22] and the Molski [23] are

λTHA = sign(p)

[
1 −

(
R

r

)p]
(5)

and

λMOL = r − R

ar + (1 − a)R
(6)

respectively. Substitutions of p = −1 and p = 1 into Eq. (5) reduce it to the basis
functions of Dunham and SPF respectively, while substitutions of a = 0, a = 1 and
a = 0.5 reduce Eq. (6) into the basis functions of Dunham, SPF and Ogilvie respec-
tively. The basis functions of the extended power-series, on the other hand, generally
possess additional parameter(s) with p [24–27] or without p [28–30]. Although addi-
tional parameters in general aid curve fitting by the provision of functional flexibility,
the coefficients Ci (i = 0, 1, 2, . . .) in the basic power-series potentials are sufficient
to provide very good fitting. Any further refinement can be meaningfully and suffi-
ciently be achieved by means of adjusting the type parameters. As such, this paper
proposes a new basis function for a generalized power-series potential to complement
the existing generalized power-series potentials [22,23], which are few in comparison
to the extended power-series potentials [24–30].

2 Proposed potential function

A power-series potential energy function is proposed herein in the form given by Eq. (1)
with a basis function, λ that complements the Thakkar and Molski basis functions. As
a trial, a basis function is proposed in the form

λTRIAL =
(

R

r

) p−1
2 −

(
R

r

) p+1
2

(7)

which, upon substitution of p = −1 and p = 1 leads it to the Dunham and SPF basis
functions respectively, as would the Thakkar basis function. An obvious advantage
that this trial basis function has over the Thakkar basis function is in its stability at
p = 0. Thakkar’s basis function is undefined when p = 0. However, substitution of
p = 0 does not reduce it to the Ogilvie function. Instead, it takes the form

(λTRIAL)p=0 =
√

r

R
−

√
R

r
. (8)
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Fig. 2 Plots of q at a = 0.5 and
of a at q = 0.5 against the
dimensionless internuclear
distance

It follows that this trial form of basis function leads one to conceive a new basis
function of the form

λ =
( r

R

)1−q −
(

R

r

)q

(9)

in which λ = λTRIAL when q = 0.5. The basis function given in Eq. (9) can be
rewritten in an alternate form

λ = r − R

rq R1−q
. (10)

Substitution of q = 0 and q = 1 gives the Dunham and SPF basis functions respec-
tively, thereby implying an analogy between the Molski type parameter, a and the
present type parameter, q. For the range q ∈ (0, 1), an understanding on the relation
between type parameters a and q can be sought by equating λ = λM O L to give

a =
( r

R

)q − 1
r
R − 1

(11)

and

q = ln
[
1 + a

( r
R − 1

)]
ln

( r
R

) . (12)

For illustration, a curve of q at a = 0.5 and a curve of a at q = 0.5 were plotted
against the dimensionless internuclear distance (r/R) in Fig. 2.

An analogy between the present basis function with that of Ogilvie can be obtained
by substituting q = 0.5 to give

λ = r − R√
r R

, (13)
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which bears remarkable resemblance to, as well as complimenting, Eqs. (2)–(4). Hence
the Molski basis function at a = 0.5 (i.e. the Ogilvie basis function) and the presently
investigated basis function at q = 0.5 have, at their denominator, an arithmetic mean
and a geometric mean respectively. For a power-series potential energy function to be
valid, it must fulfill at least two criteria, namely:

lim
r→0

U = ∞ (14)

and

U |r=R = 0. (15)

Reference to Eq. (9) shows that

lim
r→0

λ = ∞ (16)

and

λ|r=R = 0, (17)

which fulfill the conditions spelt out in Eqs. (14) and (15) respectively. The third
criterion,

lim
r→∞ λ = D, (18)

whereby D is the dissociation energy, is not readily met by power-series potentials.
Nevertheless the power-series potentials are applicable for accurately describing small
change in internuclear distance about the equilibrium bond length if a few coefficients
are sufficient for providing reasonable curve fitting up to a desired change in the inter-
nuclear distance. As a test of validity over intermediate range, the presently proposed
potential is compared with other results in the next section.

3 Results and discussion

Table 1 lists the RKR potential-energy data for the X1�+ state of 12C16 O adapted from
Camacho et al. [31]. From this set of data, coefficients of the power-series potential
function, i.e. Ci (i = 0, 1, 2, 3, 4) , were obtained by performing curve-fitting to the
Dunham, SPF, Ogilvie and the presently proposed power-series potential at q = 0.5.
Results of the coefficients are furnished in Table 2. The validity of the proposed power-
series potential at q = 0.5 is attested in Fig. 3, which shows how this potential fare in
comparison with other power-series being curve fitted to the RKR results. The good
fit between the present power-series (at q = 0.5) and the RKR result is not surprising
since the Dunham and SPF potentials form the extreme ends of the proposed potential
at q = 0 and q = 1 respectively.
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Table 1 RKR potential energy data for the X1�+ state of 12C16 O (adapted from Camacho et al. [31])
whereby R = 1.128 Å

r/Å U/cm−1 r/Å U/cm−1 r/Å U/cm−1

0.862 68,044 0.941 26,899 1.491 28,704

0.863 66,903 0.946 25,069 1.509 30,483

0.865 65,738 0.952 23,213 1.526 32,237

0.867 64,549 0.958 21,331 1.544 33,965

0.868 63,335 0.964 19,424 1.561 35,668

0.87 62,098 0.971 17,490 1.578 37,346

0.872 60,836 0.979 15,531 1.596 38,999

0.874 59,551 0.987 13,546 1.613 40,627

0.876 58,241 0.997 11,534 1.631 42,230

0.879 56,907 1.007 9,496 1.648 43,808

0.881 55,549 1.019 7,432 1.666 45,362

0.883 54,167 1.034 5,342 1.683 46,891

0.885 52,761 1.053 3,225 1.701 48,395

0.888 51,330 1.083 1,082 1.719 49,874

0.891 49,874 1.179 1,082 1.737 51,330

0.893 48,395 1.22 3,225 1.755 52,761

0.896 46,891 1.25 5,342 1.773 54,167

0.899 45,362 1.276 7,432 1.792 55,549

0.902 43,808 1.3 9,496 1.81 56,907

0.905 42,230 1.322 11,534 1.829 58,241

0.908 40,627 1.342 13,546 1.848 59,551

0.912 38,999 1.363 15,531 1.868 60,836

0.915 37,346 1.382 17,490 1.887 62,098

0.919 35,668 1.401 19,424 1.906 63,335

0.923 33,965 1.419 21,331 1.927 64,549

0.927 32,237 1.438 23,213 1.947 65,738

0.932 30,483 1.456 25,069 1.968 66,903

0.936 28,704 1.474 26,899 1.989 68,044

Table 2 Coefficients of the Dunham, SPF, Ogilvie and the present potential function (at q = 0.5) based
on curve fitting to the X1�+ state of 12C16 O [31]

DUN SPF OGI Present

C0/cm−1 614,097 609,345 608,934 609,382

C1 −2.843 −0.7018 −1.705 −1.699

C2 4.679 −0.5723 1.255 0.9843

C3 −4.432 −0.04225 −0.4904 0.1169

C4 1.773 0.3290 0.08703 −0.2919
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Fig. 3 Comparison between the RKR results of the X1�+ state of 12C16 O with the power-series potential
energy functions of Dunham, SPF, Ogilvie and the presently proposed model

Table 3 Coefficients of the present potential function based on curve fitting to the X1�+ state of 12C16 O
[31] at q = 0.2, 0.4, 0.6 and 0.8.

q = 0.2 q = 0.4 q = 0.6 q = 0.8

C0/cm−1 609,413 609,740 608,804 608,516

C1 −2.323 −1.895 −1.504 −1.104

C2 2.912 1.517 0.5378 −0.1562

C3 −2.196 −0.4179 0.4014 0.3818

C4 0.7693 −0.08787 −0.3053 0.08791

As an example to observe how the curve fitting is influenced by the parameter
q, the same RKR results for at 12C16 O is being fitted by the proposed potential at
q = 0.2, 0.4, 0.6 and 0.8. The obtained coefficients as a result of fitting are listed in
Table 3. Based on these coefficients, the corresponding potential energy curves were
plotted in Fig. 4. As one would expect, certain values of q give more realistic or better
convergence than others. Whilst greater number of coefficients provide better fitting,
a judicious choice of q aids the fitting performance for a given number of coefficients.

4 Conclusion

Although a recent series-type potential energy function aims to increase the flexibility
by generalizing from the Lennard-Jones, Morse, Buckingham and Linnett potentials,
and is hence generalized enough for quantifying a large range of interaction from
interatomic covalent bond to intermolecular interaction [32], the presently proposed
potential provides a form of generalization that is less inclusive but more accurate
for describing covalent bond stretching energy. The proposed power series potential
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Fig. 4 Comparison between the
RKR results of the X1�+ state
of 12C16 O with the presently
proposed power-series model for
various q

energy function, being analogous to the Molski potential function, which offers a
mathematical alternate. While the Molski potential function changes between the
Dunham and SPF potentials by the shift in the weighted multiplier of r and R at the
denominator of its basis function, the functional change is effected in the proposed
potential through the shift in the weighted indices of r and R in the denominator
of the corresponding basis function. The “central” value of the proposed potential is
analogous to the Ogilvie potential—the denominator of the former’s basis function
being a geometric mean while that of the latter being an arithmetic mean of r and R.
Comparison with the Dunham, SPF and Ogilvie potentials by means of curve fitting
to a sample RKR results verifies the validity of the proposed potential function. Fur-
ther investigation on the proposed potential, especially in its comparative advantages
with other power-series potential functions, is suggested. The proposed power-series
expansion provides an additional choice of potential function for accurate description
of molecular potential energy near the minimum well-depth. Although not intended
for obtaining the exact solution within the framework of non-relative equation, the
parameters of this potential can be easily extracted via curve-fitting to any given set
of potential energy data, including those that have been obtained by exact solution
and by experimental approach. In view of its suitability, the proposed potential energy
function can be adopted as a covalent bond stretching energy for incorporation into the
total molecular interaction energy as quantified by the generic molecular force field
[33,34]

UT otal =
∑

U2b +
∑

U3b +
∑

U4b + UNb (19)

whereby the 2-body, 3-body and 4-body interaction energy refers to bond stretching,
bond bending and bond torsion respectively, while the non-bonded interaction

UNb =
∑

UvdW +
∑

Uele (20)

consists of van der Waals and Coulombic (or electrostatic) interactions.
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